واژه لیزر از سر کلمه‌های انگلیسی در عبارت Light Amplification by Stimulated Emission of Radiation به معنی «تقویت نور به روش گسیل القایی تابش» است.

این ماده پرتو نور را که به وسیله یک منبع انرزی بیرونی (از نوع الکتریسیته یا نور) به وجود آمده، تقویت می‌کند.

مبانی نظری لیزر را آلبرت ایشتین در سال 1916 میلادی طی مقاله‌ای مطرح کرد ولی سال‌های نسبتاً زیادی طول کشید تا صنعث و فناوری امکان ساخت اولین لیزر را فراهم کند. در سال 1953 چارلز تاونز میزر (تقویت‌کننده موج میکروویو) را اختراع کرد و می‌خواست آزمایشات خود زا حول جایگزینی نور مرئی به جای مادون قرمز ادامه دهد و هم‌زمان این امر بین آزمایشگاه‌های مختلف در سراسر جهان به عنوان رقابتی جدی در نظر گرفته شد که عبارت لیزر در همان زمان در مقاله‌ای از گوردون هولد، دانشجوی دکترای دانشگاه کلمبیا، پیشنهاد شد و در سال 1960اولین لیزر (که با موفقیت کار کرد) توسط تئودور میمن (Theodore H. Maiman) ساخته شد. و اولین لیزر گازی(با استفاده از هلیوم و نئون) هم توسط علی جوان فیزیکدان ایرانی در همان 1960 ساخته شد. نخستین بار طرح اولیه لیزر (میزر) توسط انیشتن داده شد،کار لیزر به این گونه‌است که با تابش یک فوترون به یک ذره (اتم یا مولکول یا یون)برانگیخته یک فوترون دیگر نیز آزاد می‌شود که این دو فوترون با هم همفرکانس می‌باشند در صورت ادامه این روند تعداد نوترونها افزایش می‌یابند که می‌توانند باریکه‌ای از فوتونها را به وجود بیاورند.


کاربرد لیزر در پزشکی : چاقوی لیزری ، مته لیزری و ...

کاربرد لیزر در صنعت : جوشکاری لیزری ، برشهای لیزری ، برش الماس ، مسافت یاب لیزری و ...

کاربردهای نظامی : ردیاب لیزری ، تفنگ لیزری و ...

کاربردهای آزمایشگاهی و تحقیقاتی:اندازه گیری ، سنتز مواد و ...

انواع لیزر

تقسیم بندی از روی تنوع :
- لیزر های حالت جامد، بلوری یا شیشه ای - لیزرهای گازی - لیزرهای نیمرسانا - لیزرهای الکترون آزاد - لیزرهای رزینه ای رنگین - لیزرهای شیمیایی - لیزرهای مرکز رنگی - پرتو X

عناصر اساسی لیزر
ابزار لیزریک نوسانگر اپتیکی است که باریکه ی بسیار موازی شده ی شدیدی از تابش همدوس را گسیل میکند.این ابزار اساسا از 3 عنصر ساخته شده است: چشمه ی انرژی خارجی یا دمنده ، محیط تقویت کننده ، و کاواک اپتیکی یا تشدیدگر.

دمنده
دمنده یک چشمه ی انرژی خارجی است که وارونی جمعیت را در محیط لیزری به وجود می آورد. تقویت موج نور یا میدان تابش فوتون تنها در یک محیط لیزری که در آن وارونی جمعیت بین دو تراز انرژی وجود داشته باشد روی می دهد.(برای اینکه لیزر کار کند لازم است تعداد اتمهای N2 در تراز انرژی E2 از تعداد اتمهای N1 در تراز انرژی E1 بزرگتر باشد.این وضعیت را وارونی جمعیت می نامند.) وارونی جمعیت و گسیل القائی با هم در محیط لیزری کار می کنند و باعث تقویت نور می شوند. در غیر این وضعیت موج نور عبور کننده از محیط لیزری تضعیف خواهد شد.
دمنده ها می توانند از نوع اپتیکی ، الکتریکی ، شیمیایی یا گرمایی باشند به شرط این که انرژی لازمی را فراهم کنند که بتواند با محیط لیزری برای برانگیختن اتمها و ایجاد وارونی جمعیت لازم همراه شود.
در لیزر های گازی مانند He-Ne ، دمنده ای که از همه بیشتر به کار می رود از نوع تخلیه ی الکتریکی است. عوامل مهم حاکم بر این نوع دمش مقطع های برانگیزش الکترونی و طول عمرهای ترازهای انرژی مختلف هستند. در بعضی از لیزرهای گازی ، الکترون های آزادی که در فرایند تخلیه تولید شده اند با اتمها ، یونها یا مولکول های لیزر مستقیما برخورد و آنها را برانگیخته می کنند . در سایر لیزرها ، برانگیزش توسط برخوردهای ناکشسان اتم-اتم ( یا مولکول-مولکول) روی می دهد.


محیط لیزری

محیط تقویت کننده یا محیط لیزری یک قسمت مهم از ابزار لیزر است . بسیاری از لیزرها از روی نوع محیط لیزری به کار رفته در آنها نامگذاری می شوند ، بعنوان مثال ، هلیم-نئون (He-Ne ) ، دی اکسیدکربن (Co2 ) و نئودیمیم : نارسنگ ایتریم آلومینیم (Nd:YAG) . محیط لیزری ، که می تواند گاز،مایع یا جامد باشد ، طول موج تابش لیزری را تعیین می کند.
مهمترین لازمه ی محیط تقویت کننده توانایی آن برای ایجاد وارونی جمعیت بین دو تراز انرژی اتمهای لیزری است.این وضعیت با برانگیختن ( یا دمیدن ) اتمهای بیشتری به تراز انرژی بالاتر نسبت به اتمهای موجود در تراز پایین تر تحقق می یابد.( چنانکه معلوم شده است ، حتی با دمش قوی ، به علت اختلاف زیاد طول عمرهای ترازهای انرژی اتمهای قابل استفاده ، تنها جفت های مشخصی از ترازهای انرژی با طول عمرهای خودبه خودی مناسب را می توان " وارون " کرد.

تشدیدگر
یعنی یک "ابزار پسخور " اپتیکی که فوتون ها را در محیط ( تقویت کننده ی ) لیزری به جلو و عقب میراند. این تشدیدگر یا کاواک اپتیکی ، از یک جفت آینه ی تخت یا خمیده تشکیل شده است که دقیقا همردیف شده اند و مراکز آنها روی محور اپتیکی دستگاه لیزر قرار دارند. بازتابندگی آینه ی انتهایی باید تا حد امکان نزدیک به 100% باشد. آینه ی دیگر با بازتابندگی اندکی کمتر از 100% انتخاب می شود تا قسمتی از باریکه ی بازتابنده ی داخلی بتواند ، بعنوان باریکه ی لیزری مفید خروجی ، از آن عبور کند . هندسه ی آیینه ها و فاصله ی آنها تعیین کننده ی ساختار میدان الکترومغناطیسی داخل کاواک لیزری هستند.
مناسب است که تشدیدگر لیزری را یک تشدیدگر فابری-پرو با چند متغیر در نظر بگیریم. در تشدیدگر لیزری ، کاواک بطور کلی با آیینه های خمیده بجای آیینه های تخت محصور شده است ، و بجای کاواک تهی که مشخصه ی تشدیدگر فابری-پرو است کاواک پر (یا تقریبا پر) از ماده ی بهره به کار میرود. با وجود این ، وضعیت تشدید برای مدهای محوری (یا طولی) برای دو تشدیدگر یکسان است.
توصیف ساده ی کار لیزر

اساسا میدانیم که فوتونها با انرژی تشدیدی مشخصی باید در کاواک لیزری تولید شوند ، باید با اتمها برهم کنش کنند ، و باید از طریق گسیل القائی تقویت شوند ، و تمام اینها در حین رفت و برگشت بین آینه های تشدیدگر روی می دهند.

در مرحله ی 1 انرژی از یک دمنده ی مناسب به محیط لیزری جفت میشود.

این انرژی به اندازه ی کافی هست تا بتواند تعداد زیادی اتم را از حالت پایه ی E0 به چندین حالت برانگیخته ، که دسته جمعی با E3 نشان داده شده اند ، ببرد. همین که اتمها در این ترازها قرار گرفتند خودبه خود ، از طریق زنجیره های مختلف ، دوباره به حالت پایه ی E0 فرو می افتند. اما بسیاری از آنها سفر بازگشت را ترجیحا با یک فروافت بسیار سریع ( و معمولا بی تابش) از ترازهای دمنده ی E3 به یک تراز بسیار خاص مانند E2 شروع می کنند. این فرایند فروافتادن در مرحله ی 2 نشان داده شده است. تراز E2 را "تراز لیزری بالاتر " می نامیم. این تراز به این معنی یک تراز خاص است که طول عمر زیادی دارد. بنابراین ، وقتی اتمها از ترازهای دمنده ی E3 به E2 سرازیر می شوند در این تراز شبه پایدار ، که به منزله ی تنگه عمل میکند ، تدریجا جمع می شوند. در این فرایند ، N2 به مقدار زیادی افزایش می یابد. وقتی تراز E2 مثلا با گسیل خودبه خودی فروافت می کند ، به تراز E1 ، که " تراز لیزری پایین تر " نامیده می شود ، فرو می افتد. تراز E1 یک تراز عادی است که سریعا به حالت پایه فرو می افتد و در نتیجه جمعیت N1 نمی تواند چندان زیاد شود. اثر نهایی عبارت است از وارونی جمعیت ( N2 > N1 ) که برای تقویت نور از طریق گسیل القائی لازم است.

همینکه وارونی جمعیت برقرار شد اگر فوتونی با انرژی تشدیدی h = E2 ? E1 از کنار یکی از اتمهای N2 که در تراز لیزری بالاتر هستند بگذرد ( مرحله ی 3 ) گسیل القائی می تواند روی بدهد . با وقوع گسیل القائی ، تقویت لیزری شروع می شود.

شکل (الف ) اساسا همین کنش را بر حسب رفتار اتمها در محیط لیزری و جمعیت فوتون در کاواک نشان می دهد. در ( الف ) محیط لیزری واقع در آیینه های تشدیدگر اپتیکی نشان داده شده است. آیینه ی 1 اساسا 100% بازنابنده است ، در حالیکه آیینه ی 2 بطور جزئی بازتابنده و بطور جزئی ترا گسیلنده است . بیشتر اتمها در محیط لیزری در حالت پایه اند . این حالت با نقطه های سیاه نشان داده شده است. در ( ب ) ، انرژی خارجی ( نور ناشی از درخشزن یا از تخلیه ی الکتریکی ) به محیط دمیده می شود و بیشتر اتمها را به ترازهای برانگیخته ( E3) بالا می برد. حالت های برانگیخته با دایره نشان داده شده اند . در فرایند دمش ، وارونی جمیت برقرار می شود . فرایند تقویت نور در (ج) ، وقتی اتمهای بر انگیخته ( تراز E2 ) خودبه خود به تراز E1 فرو می افتد ، شروع می شود . چون این یک گسیل خودبه خودی است فوتون های تولید شده در این فرایند بطور کاتوره ای در تمام راستا ها منتشر می شوند. بنابراین ، بسیاری از آنها با عبور از جدار جانبی کاواک لیزر از دست می روند. با این همه ، بطور کلی چند فوتون -که آنها را فوتونهای "بذر " می نامیم- در راستای محور اپتیکی لیزر انتشار می یابند. این در شکل (ج) با پیکانهایی که عمود بر آینه هستند نشان داده شده اند. با وجود فوتونهای بذر با انرژی (تشدیدی) صحیح که دقیقا در بین آینه ها جهت گرفته اند و مقدار بسیاری اتم N2 که هنوز در حالت وارون E2 هستند ، مرحله ی گسیل القائی شروع می شود. همچنانکه فوتونهای بذر از کنار اتمهای وارون N2 می گذرند، گسیل القائی فوتونهای یکسانی را در همین راستا اضافه می کند، و در نتیجه جمعیت دائما افزایش یابنده ی فوتونهای همدوسی که بین آینه ها به جلو و عقب بازتابیده می شوند فراهم می آید. این فرایند سازندگی ، که در شکلهای (د) و (ه) نشان داده شده است، تا وقتی اتمهای وارون و فوتونهای انرژیِ تشدیدی در کاواک وجود داشته باشند ادامه می یابد. چون آینه ی خروجیِ 2 تا حدی شفاف است، کسری از فوتونهای فرودی به این آینه از آن عبور می کنند. این فوتونها باریکه ی لیزری خارجی را که در شکل (و) نشان داده شده است تشکیل می دهند. آن فوتونهائی که از آینه ی خروجی بازتابیده می شوند، حرکت رفت و برگشت را در ماده ی بهره ی کاواک تکرار می کنند.

خواص باریکه ی لیزر
1- نور لیزر تکفام است.
2- همدوس است.
3- جهت مند است.
4- درخشان است.(درخشائیِ یک چشمه ی امواج الکترومغناطیسی عبارت است از توان گسیل شده از واحد سطح چشمه در واحد زاویه فضائی.)

کاربردهای لیزر

کاربرد در فیزیک و شیمی ،

کاربرد در زیست شناسی و پزشکی ،

کاربرد در فرآوری مواد ،

کاربرد در ارتباطات نوری ،

کاربرد در اندازه گیری و بازرسی ،

کاربرد در گداخت گرما هسته ای ،

کاربرد فرآوری اطلاعات نوری و ضبط آنها ،

کاربردهای نظامی ،

تمام نگاری (هولوگرافی) ،

کاربردهای صنعتی و الکتریکی.

برشهای لیزری
لیزر در برش انواع مواد مانند فلزات و مواد غیر فلزی همچون کامپوزیت‌ها کاربرد دارد. روش کلی کار بدین صورت است که ابتدا پرتو لیزر را به‌وسیله لنزی متمرکز کرده سپس بر روی ماده مورد نظر می‌‌تابانند وبریدگی تقریبآ به اندازه قطر پرتو متمرکز گردیده ایجاد می‌گرددو در حین کار از یک گاز کمکی نیز به منظور سرد کردن قطعه کار ونیز زدودن فوری زائده‌ها استفاده می‌شود. از انواع گازهایی که به عنوان گاز کمکی استفاده می‌گردد می‌توان از اکسیژن و نیتروژن و یا آرگون نام برد.

چاقوی لیزری

چاقوی لیزری وسیله‌ای است برای برش با استفاده از لیزر توسط جراحان.

جوشکاری لیزری

جوشکاری توسط پرتو لیزر در تولیدات صنعتی بشکل روزافزونی در حال گسترش است و دامنه? استفاده? آن از میکرو الکترونیک تا کشتی سازی گسترده شده است. تولید انبوه خودکار در این بین از بیشترین توسعه برخوردار گشته‌اند که این پیشرفتها را می‌توان مرهون عوامل زیر دانست:
حرارت ورودی محدود منطقه حرارت پذیرفته کوچک میزان ناصافی اندک سرعت بالای جوشکاری این خصوصیات جوشکاری لیزری را گزینه منتخب بسیاری از قسمتهای صنعتی کرده که از جوشکاری مقاومتی در گذشته استفاده میکردند. با توجه به خصوصیات منحصر به فرد این روش می‌توان بکارگیری گسترده آنرا در زمینه کاربردهای مختلف انتظار داشت.

فرآیندهای ترکیبی که از ترکیب لیزر و قوس MIG استفاده می‌کنند برای قرار گرفتن بر سطحی که بایستی جوشکاری در آن انجام شود طراحی شده اند. علاوه بر این تجهیزات ویژه بکار گرفته شده بشکل قابل توجهی ابزارهای مورد نیاز برای آماده سازی لبه مورد نظر برای جوشکاری را کاهش می‌دهند. آلیاژهایی که برای سیمهای پر کننده در قسمت درز گیری بکار میروند باعث یکدست شدن فیزیکی آن ناحیه میشوند. علاوه بر این فرآیندهای ترکیبی بکار گرفته شده قادر اند سرعت انجام کار را بشکل قابل توجهی افزایش دهند. همچنین در نفوذ عمقی و درزگیری کلی هم موثرند. پیشرفتهای بی نظیر اخیر در زمینه دیودهای لیزری موقعیت جدیدی را برای حل مشکلات همیشگی صنعتی فراهم کرده است. البته باید در نظر داشت که این فرآیندها برای همگون شدن با قسمتهای مورد نظر بایستی بشکلی اختصاصی تغییر یابند.


لیزرهای دی اکسید کربنی قدرتمند(2-10kW) در حال حاضر در جوشکاری بدنه اتومبیلها، قسمتهای حمل و نقل، مبادله کننده‌های حرارتی و پر کردن حفره‌ها مورد استفاده قرار میگیرند. سالها لیزرهای یاقوتی کمتر ازw500برای جوش بخشهای کوچک مورد استفاده قرار می‌گرفتند. برای مثال قسمتهای کوچک و ظریف ابزارهای پزشکی، بسته‌های الکترونیکی و حتی تیغ های اصلاح صورت. لیزرهای یاقوتی چند کیلوواتی از گذراندن پرتو از فیبرهای نوری استفاده میکردند. اینکار بسادگی توسط روبوت ها انجام می‌شد و دامنه وسیعی از کاربردهای سه بعدی مثل برش لیزری و جوش بدنه اتومبیلها را ممکن میکرد.
پرتو لیزر در نقطه کوچکی متمرکز می‌شود و باشدتی که در آن نقطه ایجاد می‌کند باعث ذوب و حتی بخار کردن فلز می‌شود. برای تمرکز نیروی لیزرهای دی اکسید کربنی قدرتمند، آینه‌های خنک شونده توسط آب بجای عدسی ها مورد استفاده قرار می‌گرفتند. جوشکاری بطور کلی به دو شکل انجام می‌شود. در شکل هدایتی جوشکاری، حرارت از طریق هدایت گرمایی به فلز منتقل می‌گردد. این روش مختص لیزرهای یاقوتی نسبتا کم انرژی تر است کهم معمولا جوشکاری های کم عمق تر با آنها انجام می‌شود. جوشکاری با لیزرهای پر انرژی معمولا در پر کردن حفره‌ها مورد استفاده قرار میگیرد. در این قسمت است که ذوب و تبخیر فلز اتفاق می‌‌افتد.

لیزر گازی
لیزر گازی, لیزری است که درآن جریان الکتریکی ،برای تولید نور، در یک گاز تخلیه می‌شود. علی جوان مخترع این نوع لیزر اولین بار با کمک گاز هلیوم و نئون موفق به ساخت این دستگاه شد. تئوری ساخت لیزر CO2 :

اجزای سازنده لیزر CO2 با جریان گاز
تیوپ لیزر آینه های لیزر منبع گاز CO2 و N2 و He پمپ خلا منبع ولتاژ بالا آند و کاتد سیستم خنک کننده پیچ ها و پایه های تنظیم
در ادامه به برسی هریک از اجزای لیزر به طور مجزا می پردازیم و با ارائه آمار و ارقام و روش های پیشنهادی ، تئوری کاملی از ساخت لیزر CO2 با جریان گاز ارائه خواهیم داد .

سیستم خلا و گازهای لیزر

همان طور که در طرح ساخت بیان شد ، از سیستم جریان گاز با تخلی الکتریکی ولتاژ بالا استفاده می شود. در ادامه نکات مهمی در مورد راه اندازی سیتم خلا و جریان گاز بیان می شود
- تمام هوای داخل لوله باید تخلیه شود . تخلیه باید تقریبا به طور کامل انجام شود چرا که وجود هوای پس ماند در لوله باعث ضعیف شدن پرتوی خروجی یا عدم خروجی لیزر می شود. - هر گونه آلودگی را از روی تیوپ لیزر پاک کنید چرا که ممکن است باعث اختلال در پرتوی خروجی شود . توجه شود که برخی از مواد خلا مانند گریش و مواد پوشاننده درز ها مشکلی ایجاد نمی کند. - فشار گاز لیزر را به صورت تکی یا مخلوط ، چه در ابتدای کار و چه به هنگام عمل لیز کنترل کنید .

درصد ترکیب گاز ها در لیزر co2 به صورت زیر است:

گاز ها
حجم (لیتر)
فشار (بار) دی اکسید کربن 16% تا 4%
7930 – 280
167 - 2400 نیتروژن 20% تا 10%
5664 – 200
2124 - 75 هلیوم به میزان تعادل
2124 – 75
146 - 2100

با توجه به نقشه ساخت لیزر به صورت زیر عمل می کنیم . ابتدا ورودی گاز لیزر را میبندیم و سپس از طرف دیگر توسط پمپ تخلیه کاواک را به طور کامل تخلیه می کنیم . منبع گاز را با توجه با جدول بالا پر میکنیم و سپس آن را به ورودی کاواک متصل می کنیم . سپس شیر ورودی را باز کرده تا مخلوط گاز وارد کاواک شود به منظور برقرار کردن جریان گاز در طول کاواک باید خروجی لیزر را به پمپ خلا متصل کنیم تا با مکشی که ایجاد میکند ، گاز در طول لوله جریان یابد . راه دیگر برای ایجاد جریان گاز این است که خروجی کاواک را به یک مخزن خالی گاز با فشار کمتر از مخزن ورودی متصل کنیم . توجه شود که باید مسیر جریان گاز در طول لوله از آند به کاتد باشد تا تخلیه الکتریکی هم مسیر با عبور جریان انجام شود . لوله هایی که مخزن گاز و پمپ خلا را به لیزر متصل می کنند باید انعطاف پذیر باشند . محل اتصال لوله ها به لیزر باید کاملا عایق بندی شود تا هیچ گونه نشط به بیرون نداشته باشد و باعث افت فشار نشود .

تیوپ لیزر

مهمترین قسمت لیزر co2 تیوپ آن می باشد . تیوپ های لیزر را معمولا از جنس لوله تخلیه پلاسما یا از جنس شیشه می سازند . اما کاواک های شیشه ای مرسو تر هستند زیرا دست رسی و ساخت آنها آسان تر است . بهترین شیشه به منظور ساخت کاوا لیزر ، شیشه پریکس نسوز است که در مقابل تغییر دما مقاومت بالایی دارد . چرا که سیستم لیزر با تولید گرمای زیادی همراه است. با توجه به طرح ساخت ، طول تیوپ لیزر را 45 سانتی متر و قطر مقطع آن را 2.5 سانتی متر در نظر می گیریم . جهت اتصال لوله های ورودی و خروجی گاز ، دو سوراخ در قسمتهای ابتدا و انتهای تیوپ لیزر تعبیه می کنیم یا اینکه تیوپ را به هنگام ساخت به گونه ای می سازیم که قابلیت اتصال دو لوله به ابتدا و انتهای ان وجود داشته باشد. تیوپ لیزر ابتدا در یک لوله شیشه ای بزرگتر که همان لوله سیستم خنک کننده است قرار می گیرد و سپس بر رویه پایه های نگه دارنه لیزر محکم می شود.

سیستم خنک کننده

از انجا که عمل لیز گرمای زیادی ایجاد می کند و توان لیزر را تا حد زیادی کاهش می دهد پس باید به فکر راهی برای خنک کردن تیوپ لیزر و آینه ها باشیم. یک روش خنک کردن سیستم استفاده از جریان گاز می باشد . و روش دیگر استفاده از سیستم خنک کننده ی گردش آب می باشد . به این منظور باید کاواک را در یک لوله شیشه ای بزرگ قرار دهیم . طرز کار به گونه ای است که تیوپ لیزر در وسط لوله بزرگتر قرار دارد و آب از اطراف آن جریان می یابد و آن را خنک می کند. جهت اجاد جریان اب در سیستم خنک کننده باید دو سوراخ در لوله شیشه ای بزرگ به منظور اتصال لوله های ورودی و خروجی آب تعبیه کنیم . و با اتصال آن از طریق لوله ها به یک پمپ ، آب را از یک مخزن درون لوله شیشه ای به جریان بیندازیم . جهت پمپ آب میتوان از پمپ آکواریوم یا پمپ کولر های آبی استفاده کرد که اب را از یک منبع به داخل سیستم خنک کننده جریان می دهند. در بستن لوله های آب و سیستم خنک کننده به هم سعی شود تا هیچگونه نشط آب به بیرون وجود نداشته باشد.
طبق طرح طول لوله شیشه ای سیستم خنک کننده 30 سانتی متر و قطر آن 5 سانتی متر می باشد .

آینه ها و نصب آنها در لیزر

همانطور که در قسمت تشدید کننده های نوری بیان شد برای افزایش توان لیزر و موازی کردن مسیر بازتاب پرتوها در کاواک از آینه هایی با درصد بازتابش بالا استفاده می شد تا فوتونها بتوانند بین دو آینه بازتاب کننده برای جلوگیری از تلفات به دلیل جلوگیری از پراش در لبه های آینه ها از سیستمی استفاده می شود که در آن یک آینه تخت با در صد بازتابش تقریبا 100% و یک آینه مقعر با در صد بازتابش تقریبا 90%در دو طرف کاواک تعبیه شده باشد. با توجه به در صد بازتابش آینه مقعر با بازتابش 90% می باشد. از آنجا که خروجی لیزرهای co2 در محدوده 10.6 میکرون است از قطعات اپتیکی مثل شیشه و یا کوارتز جهت ساختن آینه های لیزر نمی توان استفاده کرد .چون این مواد در محدوده 10.6 جذب زیادی دارند بنابراین خروجی لیزر را به شدت کاهش می دهند و در اثر گرمای زیادی که در اثر فرایند جذب در آنها ایجاد می شود ممکن است بشکنند یا ذوب شوند. بنابراین برای ساختن آینه های لیزر از موادی مانند ژرمانیوم – گالیوم - آرسناید- سولفید روی- طلا و هالوژن ها می توان استفاده کرد. در میان این آینه ها هالوژنها کمترین جذب را دارند ولی جذب رطوبت و نرم بودن آنها مشکلاتی را فراهم می کند. آینه های فلزی با در صد بازتاب 100% نیز می توانند برای استفاده در این طول موجها مورد استفاده قرار گیرند. ما در ساخت لیزر co2 با جریان گاز از آینه ژرمانیوم و طلا استفاده می کنیم. به این صورت که آینه تخت را از جنس آینه ژرمانیوم و آینه مقعر را از جنس آینه طلا انتخاب می کنیم.
تقریبا بیشترین هزینه در ساخت لیزر co2 مربوط به تهیه آینه هاست. لازم به تذکر است که آینه مقعر طلا که مورد استفاده قرار می گیرد دارای شعاع انحنای cm 120 باید باشد در ضمن خروجی لیزر هم از همین آینه هاست. نکته دیگری که باید هنگام تهیه آینه ها در نظر گرفت این است که آینه ها باید از طرف جلوی آینه پوشش داده شده باشند یعنی پوشش طلا یا ژرمانیوم باید بر روسی سطح ِنه باشد نه پشت آینه. در صورتی که در تهیه آینه طلا با مشکل مواجه شدیم می توانیم از آینه آلومینیوم نیز استفاده کرد. گاهی اوقات نیز در ساخت آینه ها سطح آینه را با استفاده از چند ماده مختلف با در صد بازتابش بالا در طول موجهای متفاوت استفاده می شود. ولی ضخامت پوش هر ماده بر روسی سطح آینه برابر با نصف طول موج نوری است که آینه برای آن طراحی شده است. در انتخاب آینه مقعر باید توجه کرد که شعاع انحنای آن باید بزرگتر از طول کاواک لیزر باشد. در ادامه جدولی از آینه ها و اطلاعات مربوط به آن ارائه شده است.

نصب آینه ها و پیچهای تنظیم

نصب آینه ها به صورت ثابت ولی حرکت در دو انتهای کاواک ممکن است مشکلاتی از قبیل عدم موازی بودن پرتوها و یا ضعیف شدن توان خروجی لیزر برای ما ایجاد کند. بنابر این بهترین کار این است که آینه ها را بر روی پایه های متحرک با پیچ تنظیم نصب کنیم تا بتوانیم ان را به راحتی حرکت داده و تنظیم کنیم. از انجا که تهیه یک تنظیم کننده ایدهآل که با سیستم خلا کاواک لیزر سازگار باشد بسیار هزینه بر است پس یک راهکار پیشنهادی ارائه می کنیم. مطابق شکل ارائه شده با دوقطعه فلز در ابتدا ، نگهدارنده ای برای آینه ها می سازیم و برای تعبیه پیچ های تنظیم دو سوراخ در آنها ایجاد می کنیم .برای اتصال اینه ها به کاواک خلا ، به ورقه ای از جنس آلومینیوم انعطاف پذیر نیاز داریم . فویل الومینیوم را به صورت زیگ زاگ مطابق شکل به صورت استوانه ای که قطر سطح مقطع ان برابر با قطر کاواک است شکل می دهیم و لبه های آن را توسط چسب قابل انعطافی مانند چسب آکواریوم به هم می چسبانیم . سپس یک انتهای استوانه انعطاف پذیر ساختگی خود را به آینه می چسبانیم و طرف دیگر آن را به کاواک لیزر . با قرار دادن پیچ های تنظیم مطابق شکل پس از چک کردن عدم نشط گاز به بیرون با روشن کردن لیزر ، آینه ها را تنظیم می کنیم . لازم به ذکر است که این سیستم باید برای هر دو آینه تخت و مقعر به کار برده شود .

تنظیم پرتوی خروجی

جهت استفاده از پرتوی لیزر باید قادر باشیم آن را در جهات مختلف هدایت کنیم. قبل از هر چیزی باید از موازی بودن پرتو های خروجی اطمینان حاصل کنیم. برای این منظور کاغذی را از وسط سوراخ کرده به گونه ای در جلوی کاواک لیزر قرار می دهیم که محور مرکزی گذرنده از کاواک هم راستا با سوراخ باشد. سپس با دستکاری پیچ های تنظیم آینه ها پرتوی خروجی از لیزر را به گونه ای تنظیم می کنیم تا از مرکز سوراخ عبور کند . اکنون ما یک دسته پرتوی مستقیم داریم . از قبل لازم به ذکر است که به دلیل نوع اینه های استفاده شده و سیتم بازتابش رفت و برگشت فوتون بین دو آینه پرتوی خروجی یک پرتوی موازی است.اکنون می خواهیم پرتو را با قطر های متفاوت بر روی نقطه مورد نظر متمرکز کنیم. جهت این کار می توان از سیستم عدسی های مرکب استفاده کرد . چند نمونه از سیتم های عدسی مرکب به منظور هدایت پرتو در شکل نشان داده شده که باتوجه به انها می توانیم با استفاده از عدسی های گوناگون با فاصله کانونی ها وشعاع های انحنای مختلف پرتوی خروجی را به گونه ای که تمایل داریم هدایت کنیم .
نکته ی دیگر در تنظیم پرتوی خروجی استفاده از پهن کننده پرتو است . پهن کننده ها شعاع پرتو های نوری را افزایش داده و ما میتوانیم با عبور دسته پرتوی گسترده تر از عدسی ، سطح کانونی کوچک تری بدست آوریم و پرتو را بیشتر متمرکز کنیم .
راه دیگری که در انتقال پرتو ها مفید است استفاده از تارهای نوری موج بر است که می توانند با قابلیت انعطاف پذیری خود ، پرتو را به نقاط مختلف انتقال دهند. اصولا این تارهای نوری دارای قطرهای کوچک ، از جنس شیشه یا کوارتز هستند و دارای یک هسته مرکزی با ضریب شکست بزرگتر از محیط اطراف خود می باشند.پرتو نور قادر به حرکت در داخل هسته مرکزی به صورت زیگ زاگ به دلیل بازتاب کلی از فصل مشترک هسته مرکزی با جداره می باشد. متاسفانه این روش برای طول موجهای تا 1.6 میکرون به کار می رود . چون میزان جذب برای طول موج های بزرگتر زیاد است ، از این روش برای انتقال پرتو در لیزر co2 نمی توان استفاده کرد .


ولتاژها

همان طور که قبلا نیز بیان شد ، دمش در لیزر های گازی از نوع تخلیه الکتریکی است که توسط ولتاژ های بالا انجام می شود .از آنجا که دمش در لیزر های co2 طی دو مرحله انجام می شود ، بنابر این ابتدا باید توسط تخلیه الکتریکی ولتاژ بالا اتم های نیتروژن را تحریک کنیم تا به حالت برانگیخته برسند و با انتقال انرژی خود به مولکول های co2 عمل لیز آغاز شود . اوین حالت تحریکی ازت تقریبا در 0.3 الکترون ولت است . بنا بر تجربه برای شروع عمل لیز به 2 الکترون ولت انرژی نیاز دارد . لازم به ذکر است که لیزر های co2 با جریانDC یا جریان متناوب AC با فرکانس خیلی پایین کار می کند. البته جریان های AC در لیزر هایی استفاده می شود که به صورت ضربانی دمش می شوند و خروجی ناپیوسته دارند . در مورد لیزر های co2 ولتاژی را برابر با 10 تا 15 کیلو ولت DC به ازای هر متر تخلیه الکتریکی استفاده می کنیم . که حدود جریان الکتریکی ما بین 10 تا 15 میلی آمپر است . برای ایجاد جریان DC می توانیم از یکسو کننده های جریان AC استفاده کنیم تا به ولتاژ آغازین 10 کیلو ولت برسیم . در لیزر های co2 نیاز نداریم که از سیستم های ولتاژ بالا با قابلیت تنظیم استفاده کنیم . اما استفاده کردن از چنین سیستمی که قابلیت تنظیم ولتاژ خروجی را داشته باشد برای تنظیم قدرت خروجی لیزر مناسب ست.چرا که هر چه ولتاژ بالاتری به کار ببریم ، عمل لیز با قدرت بیشتری انجام می شود. ولتاژ بالای اعمال شده به دو سر تیوپ لیزر اعمال می شود ، یک میدان یکنواخت در سر تا سر لوله ایجاد میکند و الکترونها در این میدان شتاب می گیرند و با برخورد به دیگر اتم ها آنها را تحریک می کنند. گاهی اوقات قبل از عمل تخلی گاز را کمی یونیزه می کنند . این عمل به کمک یک پالس ولتاژ بالا که به یکی از الکترود ها اعمال می شود یا به کمک ی سیم کوتاه که به دور لوله پیچیده شده ، انجام می گیرد . در این روش هم الکترون ها و هم یون ها و هم مولکول های خنثی در محیط وجود دارند . الکترونهایآزاد توسط میدان الکتریکی شتاب گرفته و به سمت آنود حرکت می کنند. نکته ای که به هنگام تنظیم ولتاژ مناسب در نظر می گیریم این است که ولتاژ اعمال شده را از مرز 15 کیلو ولت آغاز میکنیم . ولتاژ را اندک اندک افزایش میدهیم تا یک باریکه نوری موازی و درخشان در مرکز کاواک لیزر مشاهده شود . در چنین حالتی ولتاژ اعمال شده ولتاژ مناسبی است.

لازم به ذکر است که استفاده از ولتاژ های بالا به مراقبت بسیار زیادی نیاز دارد .

از سیم های رابط عایق استفاده کنید و هر جا که سیم پوشش خود را از دست می دهد آان را عایق کنید . سیستم ولتاژ بالا و خود دستگاه لیزر باید بر روی پایه های محکم و بدون لغزش نصب شده باشد تا از هر گونه لغزش و خطر احتمالی برخورد سیم ها جلو گیری شود.
به هنگام کار کردن با چنین سیستمی بسیار دقت کنید تا سیمهای کاتد و انود 2 اینچ به ازای هر 10 کیلو ولت از هم فاصله داشته باشند. تا از هر گونه جرقه زدن و اتصال کوتا اجتناب شود.

الکترود ها

یکی از مهمترین اجزای یک لیزر الکترود های آن می باشد. همان طور که قبلا نیز اشاره شد ، الکترود ها با آزاد کردن الکترون هاب اولیه نقش مهمی در شروع عمل لیز ، ایفا می کنند . در لیزر های مختلف ، انواع متعددی از الکترودها استفاده می شود. در لیزر های co2 به طور معمول از الکترود هایی از جنس آلو مینیوم استفاده می شود. چراکه آلومینیوم دارای الکتونهای ظرفیت مناسب جهت ازاد شدن توسط ولتاژ بالا می باشد . همچنین از انجا که سطح الومینیوم همیشه پوشیده از یک لایه اکسید آلومینیوم است این امر به ازاد کردن الکترون های بیشتری کمک می کند. در طرح لیزر از ورقه های نازک و انعطاف پذیر آلومینیوم برای ساخت کاتد و آنود استفاده می کنیم . روش کار به این صورت است که درو قطعه ورقه الومینیوم با عرض 3 و طول 15 سانتی متر تهیه می کنیم . سپس این ورقه ها را به شکل استوانه هایی هم قطر با تیوپ لیزر یعنی به قطر 2.5 سانتی متر لوله می کنیم و در دو انتهای تیوپ لیزر فرو میکنیم . سپس یک سانتی متر از هر طرف را از لوله خارج کرده و بر روی خود تیوپ خم می کنیم . پس از اتصال سیم های رابط جریان به ورقه های آلومینیوم ، آن قسمت از تیوپ را که ورقه های آلومینیوم بر روی آن تا خورده به شدت عایق بندی می کنیم تا از هرگونه تماس با آن ها غیر ممکن شود . لازم به ذکر است ، سیتم آینه ها و پیچ های تنظیم که قبلا توضیح داده شد باید پس از عایق بندی الکترود ها و لوله کاواک به انتهای لیزر متصل شود. چراکه اگر بدون عایق بندی عمل شود ، خطر برق گرفتگی وجود دارد.

محاسبه تقریبی توان لیزر

لیزر های گونتگون با نوجه به سیستمی که در ساخت آنها به کار برده شده از قبیل : نوع ماده لیزی ، طول کاواک لیزر ، روش های گوناگون دمش و نوع سیستم خنک کننده دارای توان های خروجی متفاوتی هستند. برای محاسبه توان خروجی لیزر روش های گوناگونی وجود دارد که بسیاری از آنها حاوی فرمول های سخت و پیچیده است و نیاز مند اطلاعات دقیقی از قسمت های مختلف دستگاه می باشد . در اینجا یک راه پیشنهادی و ساده جهت محاسبه توان تقریبی لیزر ارائه می شود که می تواند مفید باشد . جهت محاسبه توان خروجی، پرتوی لیزر را به یک مایع که ظرفیت گرمایی آن برای ما مشخص است می تابانیم و در مدت زمان تابش ، تغییرات دمایی را اندازه می گیریم . با محاسبه انرژی گرمایی می توان توان خروجی لیزر را از رابطه معروف p=w/t بدست آورد . یکی از مناسب ترین مایعاتی که می توان از آن استفاده کرد آب می باشد . چرا که ظرفیت گرمایی آن مشخص است و به راحتی در دسترس می باشد . اما برای محاسبه توان دقیق باید ضریب بازتابش سطح آب را نیز به هنگام محاسبات در نظر بگیریم .چرا که مقداری از پرتوی تابیده شده به سطح آب ، توسط سطح بازتابیده می شود . استفاده از مایعاتی با ظریب بازتابش کمتر ، محاسبات را دقیقتر می کند.

تلفات لیزر

راه های متفاوتی برای اتلاف در لیزر وجود دارد که به کاهش توان خروجی لیزر منجر می شود . در زیر به برخی از آنها اشاره می شود که تلاش برای رفع هر کدام از موارد ذکر شده باعث افزایش توان خروجی لیزر است . - جذب و پراکنده کردن نور توسط آینه ها . - پراش از لبه آینه ها . - عبور نور از آینه ها قبل از رسیدن به حد آستانه تابش . - پخش و پراکندگی پرتوها توسط ماده لیزری به دلیل عدم یک نواختی ماده از نظر اپتیکی . - جذب ماده لیزری و گسیل تابش هایی که مورد نظر ما نیست. - کاهش توان خروجی به دلیل گرمای حاصله از عمل لیز که میتواند باعت بالا رفتن دمای آینه ها ، کاواک لیزر و یا الکترود ها شود . - کاهش توان خروجی به دلیل عدم وجود خلا کامل در کاواک قبل از جریان دادن گاز درون کاواک. تعدادی از عوامل اتلاف ذکر شده از جمله تلفات ناشی از گرم شدن سیستم و یا پراش از لبه های آینه ها قابل رفع است که قبلا در مورد آنها توضیح داده شد . تعدادی دیگر از عوامل نیز با استفاده از مواد مناسب در ساخت لیزر قابل رفع است . به طور کلی هر جه بیشتر بتوانیم در رفع عوامل بالا تلاش کنیم ، توان خروجی بیشتری خواهیم داشت .





ایمنی لیزر

بیشتر لیزر ها تابشی گسیل می کنند که با احتمال خطر همراه است . درجه خطرناکی لیزر به مشخصات خروجی لیزر ، طریقه استفاده و تجربه فردی که از آن استفاده می کند بستگی دارد . از مشخصه های تابش لیزر جمع شوندگی پرتوی آن است . این امر به همراه انرژی بالای لیزر می تواند انرژی زیادی به بافت های فیزیو لوژیکی بدن منتقل کند.از آنجا که پرتو های لیزر دارای طول موج های متفائتی هستند ، می توانند به بافت های مختلف بدن با توجه به قابلیت جذب آنها آسیب برسانند . جذب تابش باعث افزایش دما می شود و به قطع شدن اتصالات مولکولی می انجامد . یکی از آسیب پذیر ترین قسمت های بدن تا آنجا که به تابش لیزر مربوط می شود ، چشم انسان است . این امر به این دلیل است که عدسی چشم ، پرتوی تابیده شده از لیزر را در ناحیه ای به شعاع حدود چندین برابر طول موج لیزر با چگالی بالای انرژی متمرکز می کند . میزان خسارت به طول موج بستگی دارد به طوری که تابش در نواحی ماورائ بنفش و مادون قرمز که توسط قرنیه جذب می شود ، باعث صدمه دیدن آن می شود و جذب در ناحیه مریی باعث آسیب دیدن شبکیه می گردد. این جذب ها توسط چشم می تواند به سوختگی یا نقص بینایی منجر شود . پوست می تواند بیشتر از چشم مورد تابش قرار گیرد . پوست ممکن است در تابندگی سطح بالا تاول بزند و یا آسیب کمتری ببیند . در مورد پوست هم میزان خسارت به طول موج تابش و میزان جذب بستگی دارد به یژه در محدوده پرتوهای ماورائ بنفش . معمولا مکان هایی که دستگاه های لیزر در آن ها قرار دارد ، با چراغ های اخطار و متوقف کننده های پرتو تجهیز می شوند . در این مکان ها از موادی که بازتاب کننده پرتو هستند نیز استفاده می گردد . به هنگا کار کردن با لبزر ها باید از عینک های محافظ چشمی استفاده کرد و با توجه به اینکه در لیزر ها معمولا از مولد های ولتاژ بالا استفاده می شود ، رعایت نکات ایمنی در این مورد نیز ضروری می باشد .

منبع

Sams FAQ in laser construction Laser principle and application /J.Wilson – J.F Havaks Laser miloni منبع: کارگاه هواشناسی و پژوهشگاه لیزر و نانو تکنولوژی

تازه های لیزر
دانشمندان دانشگاه استون شهر بیرمنگام در انگلستان (Aston University in Birmingham, UK) چیزی اختراع کرده اند که به عنوان طولانی ترین لیزر جهان تلقی میشود. آنها یک تار نوری optical fibre 75 کیلومتری را به لیزر تبدیل کرده اند و امیدوارند که بهبودی بر ارتباطات در فواصل زیاد گردد.
لیزر جدید استثنایی است، زیراکه میتواند سیگنال های نوری را در چنان فواصل طویلی انتقال دهد بدون آنکه انرژی هدر رود. هنگامیکه اطلاعات تبدیل به نور میشود تا با استفاده از تار های نوری استاندارد انتقال یابد به ازای هر کیلومتر حدود 5 درصد توانش تلف میشود. از این رو میبایستی سیگنال ها را تقویت نمود تا به مقصد برسند. اما هر بار که سیگنال تقویت می شود نویز ها و خش های پس زمینه نیز تقویت میگردند و این امر تا آنجا ادامه میباید که دیگر سیگنال قابل فهم نمیباشد.
دکتر آنیا (Juan Diego Ania Castan) و همکارانش از یک فرایند به نام اثر رامان (Raman effect) برای تبدیل تار نوری طویل به لیزر استفاده نمودند. اثر رامان یک پدیده طبیعی است که بر نور عبوری از درون ماده تاثیر میگذارد. لیزر هایی در هر انتها نور را به درون تار میفرستند که باعث افزایش انرژی اتم های تار شده و تابش فوتون را از آنها را منجر میشود. این فوتون ها که طول موج بلند تری دارند توسط آینه های مخصوصی در محل اتصالات بازتابیده میگردند. بدین ترتیب مقدارس نور لیزر که پایدار و یکنواخت است درون فیبر ذخیره شده و سیگنال های عبوری را قدرت میبخشد. این کار از هدر رفتن انرژی سیگنال جلوگیری میکند و احتیاج برای تقویت سیگنال ها را رفع میکند.
این کشف نه تنها در دنیای علم بلکه در دنیای ارتباطات نیز شگفت آور بوده است. دکتر آنیا میگوید: " در دنیای ارتباطات، انتقال بی اتلاف اطلاعات همواره یک هدف رویایی بوده است و با گسترش این روش امکان پژوهش در زمینه های دیگر نیز فراهم میشود ".

دسته ها : فن آوری
پنج شنبه 1388/2/31 12:36
X